

ETSI

06921 Sophia Antipolis CEDEX, France

Tel +33 4 92 94 42 00

info@etsi.org

www.etsi.org

OpenSlice White Paper

OSL 2024Q4
RELEASE WHITE PAPER

1st edition – March 2025

mailto:info@etsi.org

OSL 2024Q4 RELEASE WHITE PAPER 2 © ETSI CC-BY-4.0

Authors

OSL Leadership Group

OSL Technical Steering Committee

https://creativecommons.org/licenses/by/4.0/

OSL 2024Q4 RELEASE WHITE PAPER 3 © ETSI CC-BY-4.0

Contents

Authors 2

Contents 3

Introduction 4

Release 2024Q4 Highlights 5

Architectural Progression 6

OSL Addons 7

CAMARA 7

LF SYLVA 8

METRICO 11

End-to-End Testing 13

Service Specification Exporting / Importing 14

Multidomain and Federation scenarios 15

Generic OSL Controller 17

2024 SNS4SNS Aftermath 20

https://creativecommons.org/licenses/by/4.0/

OSL 2024Q4 RELEASE WHITE PAPER 4 © ETSI CC-BY-4.0

Introduction

With Release 2024Q4, OpenSlice (OSL) aims to remain at the forefront of addressing the evolving needs

of the telecom industry, focusing on overcoming current challenges faced by telcos. This latest release

brings optimized resource orchestration, improved integration with modern telecom tools, and more

efficient deployment and monitoring processes. These advancements ensure that OSL continues to

lead the way in supporting both research and industry sectors. The release also introduces replicable

functionality, setting new standards for modern Operator Platforms, such as CAMARA and TM Forum

Operate APIs. Additionally, it strengthens telco cloud scenarios through synergies with LF Sylva,

leveraging the power of open, contemporary, and standardized APIs.

Useful links:

⚫ Subscribe for Release 2024Q4 Webinar (3rd April 2025)

⚫ OSL News Page Release 2024Q4 announcement

⚫ ETSI announces OSL Release 2024Q4

⚫ Software documentation

https://creativecommons.org/licenses/by/4.0/
https://www.etsi.org/events/upcoming-events/2486-webinar-openslice-2024q4
https://osl.etsi.org/news/20250115_rel2024q4_announcement/
https://www.etsi.org/newsroom/news/2488-etsi-openslice-announces-release-2024q4-advancing-network-slicing-for-sustainable-next-generation-networks
https://osl.etsi.org/documentation/2024Q4/
https://osl.etsi.org/documentation/2024Q4/

OSL 2024Q4 RELEASE WHITE PAPER 5 © ETSI CC-BY-4.0

Release 2024Q4 Highlights

Among others, the latest Release 2024Q4 fosters the following key highlights:

⚫ OSL Addons: A newly launched and continuously updated Addons repository leverages Custom
Resource (CR) orchestration support to enable modern telco features and use cases:

o CAMARA: Allows the exposure and usage of Quality on Demand (QoD) API
o LF Sylva: Provides a Kubernetes operator to manage Sylva workload clusters

⚫ Kubernetes support extension: The enhanced CR orchestration logic, boosts stability, expands
Kubernetes resource exposure, and introduces intuitive resource mapping and lifecycle
management

⚫ TM Forum APIs extensions: Incorporating Resource Activation and extending the Product
Layer TM Forum APIs

⚫ Robustness and Performance enhancements: Bringing significant enhancements to
concurrent, multi-tenant usage while optimizing key components to minimize their footprint
for sustainable long-term deployments.

⚫ End-to-end testing pipelines: Enabling seamless, repeatable validations of deployment and
orchestration examples with every codebase update.

⚫ METRICO: A new (experimental) inbuilt mechanism to integrate monitoring solutions within
the service lifecycle, facilitating efficient closed-loop management.

The extensive release notes are available to probe further into the list of overall changes introduced

during Release 2024Q4, along with the updated internal components’ versions.

https://creativecommons.org/licenses/by/4.0/
https://labs.etsi.org/rep/osl/code/org.etsi.osl.main/-/releases/2024Q4

OSL 2024Q4 RELEASE WHITE PAPER 6 © ETSI CC-BY-4.0

Architectural Progression

Release 2024Q4 builds on the already introduced service-based OSL architecture, also incorporating a

new component, i.e. METRICO.

Furthermore, the architecture underwent several core enhancements in the OSOM component, to

facilitate the support of METRICO within the orchestration logic, and also in the CRIDGE component ,

already introduced in Release 2024Q2, taking into account numerous suggestions and feedback from

the userbase.

OSL Release 2024Q4 Architecture

https://creativecommons.org/licenses/by/4.0/

OSL 2024Q4 RELEASE WHITE PAPER 7 © ETSI CC-BY-4.0

OSL Addons

OSL Addons repository introduces an archive of reusable and replicable projects that leverage OSL

architecture to enable telco cloud scenarios and expose capabilities of a modern Operator Platform.

Stay tuned as addons are continuously updated!

CAMARA

The CAMARA as-a-Service (CAMARAaaS) OSL Addon is a prototype service developed by OSL and allows

users of OSL to expose CAMARA APIs for controlling their TMF-based services. By doing so, it enables

runtime operations, such as enforcing Quality of Service (QoS) profiles on User Equipment (UEs) or

updating 5G Network Slice characteristics, using standardized CAMARA API endpoints. The work is in

progress for future enhancements (e.g. multi-tenancy, etc).

In a nutshell, CAMARAaaS Addon performs API transformations from CAMARA API model to TMF API

model and vice-versa. The supporting use case is the following:

⚫ An OSL Service Provider (e.g. an Operator) has a running 5G Core (e.g. from another service
order in OSL).

⚫ A running 5G controlling service exposes already some characteristics (i.e. via TMF Service
Inventory) that can be configured. Thus, someone can reconfigure the latter during runtime
(e.g. change the quality of a slice via a TMF API service request).

⚫ On a subsequent step, the Service Provider makes a Service Order in OSL to expose this running
5G Core service via a CAMARA API endpoint.

⚫ The CAMARAaaS Addon is a wrapper between the CAMARA requests and the TMF API Service
Inventory models. These CAMARA APIs will then be used to control the lifecycle and the
operations that shall take place in an already existing OSL Service.

The Addon introduces a generic CAMARA API Service, which acts as a wrapper for existing (running)

services registered in TMF Service Inventory. With the assumption that there is a 5G controlling running

service, the architecture ensures:

1. API Exposure: CAMARA APIs are orchestrated by OSL (offered as-a-service) and their endpoints
are exposed to the end-users (clients).

2. Service Mapping: The CAMARA API Service references a running service (identified by a unique
ID), enabling targeted operations. The invoking of CAMARA API endpoints will result in updates
in the running service’s characteristics.

3. Operational Flow: Updates triggered via CAMARA APIs are propagated to the operator's
service through OSL's message queue (Active MQ), ensuring synchronization of service
characteristics.

https://creativecommons.org/licenses/by/4.0/
https://labs.etsi.org/rep/osl/code/addons

OSL 2024Q4 RELEASE WHITE PAPER 8 © ETSI CC-BY-4.0

OSL CAMARAaaS Addon Architecture

The exposure of CAMARA APIs, along with the support of OSL on multi-domain scenarios makes it an

ideal platform for supporting the GSMA OpenGateway initiative, spearheaded by TM Forum, GSMA,

and CAMARA.

Read more about the topic at:

• Offering CAMARAaaS

• Quality on Demand (QoD) Provisioning API Proof of Concept (PoC)

LF SYLVA

Sylva, a project under the Linux Foundation, is designed to meet the unique demands of the telecom

and edge cloud sectors. As telco networks increasingly transition toward edge computing

environments, Sylva provides a tailored cloud software framework for these specialized needs. It does

not only address technical challenges in this domain, but also provides a reference implementation of

the framework, which can be validated against industry requirements.

The primary goal of Sylva is to ensure that telecom operators have a reliable, flexible, and scalable

cloud infrastructure that supports the edge computing needs of modern networks. Additionally, Sylva

https://creativecommons.org/licenses/by/4.0/
https://osl.etsi.org/documentation/2024Q4/addons/camara/intro/
https://osl.etsi.org/documentation/2024Q4/addons/camara/qod/

OSL 2024Q4 RELEASE WHITE PAPER 9 © ETSI CC-BY-4.0

aims to create a validation program for these implementations, ensuring that they meet the evolving

standards and demands of the industry. You can read more about Sylva here.

The synergy between OSL and Sylva offers a powerful combination that addresses the increasing

complexity of managing telco and edge cloud infrastructures. In Release 2024Q4, we developed an

Addon operator that enables the integration of OSL and Sylva, thus optimizing service orchestration

and resource management for telecom operators. This is demonstrated through new resource

operators that OSL developed as extensions. These operators allow OSL tenants to request and manage

Sylva workload clusters directly through OSL’s platform and TMF APIs. This capability means that

tenants can now order Kubernetes clusters managed by Sylva in a self-service manner, simplifying

resource allocation and management. The integration of Sylva with OSL leverages TMF APIs to expose

and manage Sylva’s telco-focused cloud software framework. By doing so, OSL provides an efficient

means of ordering and orchestrating Sylva’s resources within the broader context of network services.

The collaboration between OSL and Sylva highlights several key advantages for telecom operators,

including:

⚫ Self-Service Resource Management: OSL tenants can seamlessly request and manage Sylva
workloads, providing greater flexibility and speed in resource provisioning.

⚫ Streamlined Orchestration: By utilizing TMF APIs, OSL simplifies the process of requesting and
managing Sylva clusters, reducing the complexity of managing edge cloud infrastructure.

⚫ Scalability and Flexibility: Sylva’s cloud framework is built specifically for the telco industry,
offering scalability and flexibility for telecom operators looking to expand their edge computing
capabilities.

⚫ Efficiency and Automation: The integration enables automated resource provisioning and
lifecycle management, ensuring that telecom operators can focus on innovation rather than
manual resource management.

We explored the following aspects, which are also represented visually in the following figure:

1. Identity and Access Management: This setup uses Keycloak for Identity and Access
Management (IAM). Both OSL (installed in an OSL management cluster) and Sylva’s services
(Sylva services installed in management cluster) interact with Keycloak to authenticate and
authorize users or services, ensuring secure access to resources. This step is crucial for
managing user permissions, access rights, and the security of operations.

2. Request Workload Clusters: The OSL Management Cluster interfaces with the Sylva
Management Cluster to request workload clusters. This is a crucial aspect of the integration,
as OSL provides a self-service capability for tenants (e.g., telecom operators) to request Sylva’s
Kubernetes-based workload clusters easily.

3. Awareness of Operators and Management of Workload Cluster Resources: After the workload
cluster is created and managed by Sylva, OSL becomes aware of the workload cluster operators
and the resources within the workload clusters. In this process, OSL is managing the workload
cluster resources as if they were its own. OSL’s CRIDGE, is utilized to ensure that OSL is fully
integrated and aware of the Sylva-managed resources.

https://creativecommons.org/licenses/by/4.0/
https://sylvaproject.org/

OSL 2024Q4 RELEASE WHITE PAPER 10 © ETSI CC-BY-4.0

4. Deploy Resources in Workload Cluster: Once the workload clusters are set up and managed,
Cloud-Native Functions (CNF) are deployed in the clusters. These CNFs represent the telco
workloads and applications that the operator needs to manage. The deployment of CNFs takes
place in the workload clusters, utilizing Sylva’s capabilities to handle these resources efficiently.

OSL – Sylva integration

More details of the approach can be found in the following three-part news blogposts:

1. Details in Identity and Access Management

2. Sylva Workload Cluster as a Service

3. Awareness of resources in a Sylva Workload Cluster

The Addon’s source code is in the respective OSL GitLab repository.

The feature was part of the demonstration that was performed during the SNS4SNS event at ETSI,
Sophia Antipolis, France, 12-14 Nov. 2024. More information about the demos can be found here.

Also, make sure to check out the related video demonstration.

https://creativecommons.org/licenses/by/4.0/
https://osl.etsi.org/news/20241015_osl_sylva_part1/
https://osl.etsi.org/news/20241015_osl_sylva_part2/
https://osl.etsi.org/news/20241104_osl_sylva_part3/
https://labs.etsi.org/rep/osl/code/addons/org.etsi.osl.controllers.sylva
https://www.etsi.org/events/2407-etsi-sns4sns-event#pane-6/
https://www.youtube.com/watch?v=dgrLVD9Sejw

OSL 2024Q4 RELEASE WHITE PAPER 11 © ETSI CC-BY-4.0

METRICO

Services and Resources created through OSL potentially provide a vast amount of data and metrics

during their runtime. These data could be leveraged to perform actions upon the said services. Before

the introduction of the METRICO component, OSL would need to rely exclusively on external tools'

implementation to report metrics to it.

The newly introduced METRICO is designed to create an inherent mechanism that initiates

customizable metrics-retrieval jobs and associates the data with services under scope. To address the

challenge of data retrieval across multiple and heterogeneous environments, OSL is not coupling tightly

with a monitoring solution, but is able to integrate with any monitoring stack that provides a

programmable API, e.g. Prometheus. Prometheus is considered a widely utilized monitoring solution

and many alternative monitoring tools converge towards its data model via implementation of

Prometheus Exporters. On the other hand, OSL remains technology agnostic by capturing the

monitoring requirements (e.g., data source, queries, interval, etc) through the TMF628 Performance

Management model and API.

In a nutshell, METRICO allows OSL users to:

⚫ integrate already owned monitoring systems with OSL (also supporting several parallel
integrations)

⚫ retrieve important metrics inherently through OSL Service Inventory

⚫ natively empower the service lifecycle with external data through LCM rules

⚫ perform closed-loop control management

OSL comprises the offered Service Specifications which, when ordered, create the respective Service

instances, accessible through the Service Inventory (based on TMF638). The rationale behind the

introduced component is that it exposes a defined METRICO Resource Specification which is used to

design monitoring-related Service Specifications. The latter comprises meaningful characteristics (e.g.

monitoring data source, query, interval, affected service, etc) that are filled in by the requester.

When the user orders a monitoring-related Service Specification (with populated characteristics of its

preference), a TMF628 Measurement Collection Job entity is created which is responsible for gathering

the requested metrics. Respecting the desired interval, this job returns the monitoring results to the

appointed service in the Service Inventory, patching a designated characteristic.

The overall approach is summarized in the following figure:

https://creativecommons.org/licenses/by/4.0/

OSL 2024Q4 RELEASE WHITE PAPER 12 © ETSI CC-BY-4.0

METRICO Approach

Read more about the topic at:

• METRICO Introduction

• Design Monitoring Service

• Example: Integrate Prometheus monitoring solution as-a-Service

https://creativecommons.org/licenses/by/4.0/
https://osl.etsi.org/documentation/2024Q4/architecture/metrico/
https://osl.etsi.org/documentation/2024Q4/service_design/monitoring/design_monitoring_services/
https://osl.etsi.org/documentation/2024Q4/service_design/examples/monitoring_aas/monitoring_aas/

OSL 2024Q4 RELEASE WHITE PAPER 13 © ETSI CC-BY-4.0

End-to-End Testing

The release also brings automation into testing OSL deployment, critical components, and functionality.

Therefore, we present a new CI/CD repository 1 that ensures the stability of the overall software

throughout code changes during the release cycle.

Specifically, the introduced repository automates the deployment, testing, and cleanup of an OSL

instance and related services using Python and Helm. It provides a robust framework for validating

OSL’s functionality in Kubernetes environments. Namely, it:

⚫ Automates the deployment of Argo CD and OSL within a Kubernetes environment

⚫ Performs end-to-end testing for service catalog management and service orders

⚫ Ensures that the expected characteristics are being exposed after a successful Kubernetes -
based deployment

⚫ Supports cleanup operations to uninstall resources after tests

The above pipeline is scheduled to run on a nightly basis on the develop branch and weekly on the

main branch, respectively.

1 Requires login

https://creativecommons.org/licenses/by/4.0/
https://labs.etsi.org/rep/osl/cicd

OSL 2024Q4 RELEASE WHITE PAPER 14 © ETSI CC-BY-4.0

Service Specification Exporting / Importing

Since Release 2024Q4, the OSL team decided to create a new Utilities repository to provide replicable

functionalities that facilitate the usage of OSL instances. The initial utilities we brought to the userbase

are the Service Specification Exporting and Importing.

Specifically, a user can leverage the Service Specification Exporting utility to export designed service

specifications from an OSL instance as packages. These packages cover all the relationships within a

Service Specification, i.e. Resource and Service Specification relationships, Lifecycle Rules,

Characteristics, etc, following an upside-down tree approach, starting from the lower-level, non-

dependent Service Specification and moving upwards the bundle.

Similarly, the Service Specification Importing utility uses the exported packages and follows the exact

opposite procedure to build the Service Specification bundle and inject it at the designated OSL

instance.

You may probe further into the topic at:

⚫ Service Specification Exporting repository

⚫ Service Specification Importing repository

https://creativecommons.org/licenses/by/4.0/
https://labs.etsi.org/rep/osl/utilities
https://labs.etsi.org/rep/osl/utilities/service-specification-exporting
https://labs.etsi.org/rep/osl/utilities/service-specification-importing

OSL 2024Q4 RELEASE WHITE PAPER 15 © ETSI CC-BY-4.0

Multidomain and Federation scenarios

Ever since 2018 2 OSL has been used in various cases supporting multi-

domain exchange of services and resource catalogs. It has also been used for

cross-domain service orchestration3 and common federation scenarios, such

as user federation through a shared authority like Keycloak. This was

demonstrated in the LF Sylva Addon section. Additionally, OSL supports

service federation through TMF-related APIs, not only for exposing catalogs

and accepting service orders but also for implementing East-West interfaces

between domains.

The first presented scenario is related to catalog synchronization, where one

domain (B) (e.g., an operator) retrieves related service specifications from a partner domain (A). This

enables Domain (B) to offer new services or bundles, involving services from partner domain (A).

OSL Synchronize Catalogs via TMF Service Catalog APIs

As soon as Domain (B) exposes available services, that involve other services from partner domain (A),

users of the domain can access the catalog and place service orders, as depicted in the next figure.

Then, the Service Orchestrator from Domain (B) instruments the Service Orchestrator from Domain (A)

to deliver the service (2c step) and expose it to its inventory. OSL then synchronizes the Domain (B)

2 https://osl.etsi.org/documentation/2024Q4/deployment_examples/

3 https://zsmwiki.etsi.org/index.php?title=PoC_2_Automated_Network_Slice_Scaling_in_Multi-
Site_Environments

https://creativecommons.org/licenses/by/4.0/

OSL 2024Q4 RELEASE WHITE PAPER 16 © ETSI CC-BY-4.0

resource and service inventories so that the user can get information (step 3) and access (step 4) the

requested resources of the partner Domain (A).

Users of DomainB can Order services involving services from DomainA

Further details on how federation scenarios can be realized are available in the respective

documentation section.

https://creativecommons.org/licenses/by/4.0/
https://osl.etsi.org/documentation/2024Q4/getting_started/configuration/consuming_services_from_external_partners/

OSL 2024Q4 RELEASE WHITE PAPER 17 © ETSI CC-BY-4.0

Generic OSL Controller

Since Release 2024Q2, OSL introduces extensive support for Kubernetes operators exposed as services

within OSL catalogs. However, inspired by the operator pattern, developers can now write their own

resource controllers and attach them to the OSL service bus. OSL's Service orchestrator (OSOM) has

the capability of contacting external controllers, given a specific resource category that this controller

can manage.

The intended goal is to write a controller that can handle resources of a specific type, e.g., resource

Specifications for managing resources of a specific category. Therefore, a new resource controller can

be registered into OSL, in the form of a Resource Specification with a designated name, category and

version, and the implementation of the controller shall listen for messages in queues as specified by

the name, category and version of the registered Resource Specification. Specifically, it shall listen for

CREATE/UPDATE/DELETE actions, with the following scheme:

• CREATE / category_name / version

• UPDATE / category_name / version

• DELETE / category_name / version

In a nutshell, the Resource Definition/Specification is registered at startup. During Service Orders of

related-to-the-specification services, the controller is invoked (via message queue) and a new service

and its underlying resource are created, with messages passing between the service and resource

layers. The resource controller processes any updates or status changes. OSOM checks the final status

of the deployed resource to confirm it is ready or identify any potential errors. The following diagram

describes what the resource controller needs to perform, showcasing how the “Resource Controller”

component interacts with various services (TMF API, Message Queue MQa, and OSOM) to register the

needed resource types, create new resources (Resource Facing Services - RFSs and underlying

resources), process updates, and check the resource’s status.

1. Controller Registration (top swimlane) – This happens when the controller bootstraps

o Register a Resource Specification: On startup, the Resource Controller posts a

ResourceSpec (containing a name, category, and version) to register it in the OSL

Resource Specification Catalog.

o QueueRegister: The controller is registered in these three queues and listens on

messages with ResourceCreate or ResourceUpdate payloads.

2. Create RFS (middle swimlane) – This happens when there is a Service Order

o ServiceOrderCreate: When a new RFS needs to be created, a “ServiceOrderCreate”

operation via the TMFAPI arrives to OSOM.

https://creativecommons.org/licenses/by/4.0/

OSL 2024Q4 RELEASE WHITE PAPER 18 © ETSI CC-BY-4.0

o ServiceCreateMSG → ResourceCreateMSG: Internally, a “ServiceCreateMSG” as well

as a “ResourceCreateMSG” are sent to the TMFAPI component to create the related

entities in the inventory.

o Resource Deployment: OSOM sends a message to the queue under the specific queue

name to CREATE the resource.

o CreateGenericResourceMSG: A generic creation message is sent (e.g.,

CREATE/<category_name>/<version>), containing metadata such as ServiceID,

ResourceID, and OrderID in the message headers.

1. org.etsi.osl.serviceId: The related service ID that refers to the created resource.

2. org.etsi.osl.resourceId: The related resource ID that is the custom controller is

expected to update.

3. org.etsi.osl.serviceOrderId: The related service order id of the deployment

request.

o WaitForResourceStatus: OSOM waits for a status response indicating success or failure

in creating the resource.

3. Resource Controller Process (lower-middle swimlane)

o ProcessRequest: After the resource is created, the Resource Controller processes any

additional instructions or updates related to the resource.

o ResourceUpdate: The resource is updated accordingly (e.g., changing configurations ,

state, etc.). The controller needs to update the resource into a valid state, e.g.

AVAILABLE, RESERVED, or ALARM. For instance, if it is update in AVAILABLE state,

OSOM later will assume that everything is OK, the service is ACTIVE, and the Service

Order is COMPLETED, respectively.

4. OSOM Check Deployment (bottom swimlane)

o GETResource → Check GETResource: OSOM retrieves the resource information to

verify its deployment and status.

Check Resource Status: OSOM checks whether the resource has transitioned into a valid operational

state (e.g., AVAILABLE, RESERVED, or ALARM).

https://creativecommons.org/licenses/by/4.0/

OSL 2024Q4 RELEASE WHITE PAPER 19 © ETSI CC-BY-4.0

A working example of such a generic controller can be found here, written in Java, but in general you

can implement one in any language.

https://creativecommons.org/licenses/by/4.0/
https://labs.etsi.org/rep/osl/code/addons/org.etsi.osl.examples.gcontroller

OSL 2024Q4 RELEASE WHITE PAPER 20 © ETSI CC-BY-4.0

2024 SNS4SNS Aftermath

The OSL community gathered at ETSI Headquarters at Sophia Antipolis, France, 12-14 Nov. 2024,

alongside other ETSI Software Development Groups (SDGs), for the vibrant and collaborative Software

and Standards for Smart Networks and Service (SNS4SNS) Conference and Hackfests. This event

provided an excellent platform for networking, exchanging insights, and delving into current

implementations.

The Conference’s highlights for OSL included:

⚫ Demonstrating synergies between ETSI SDG OpenSlice and LF Sylva

⚫ Open Source for Telco-Cloud: An ETSI SDG-based solution to facilitate zero-touch, multi-slice
5G deployment across the cloud-edge continuum

⚫ Delivering Network as a Service (NaaS) with OSL

A special mention and gratitude must be given to the OSL community for the invaluable feedback and

participation in our first OSL#1 Hackfest. Your insights have been pivotal, inspiring significant

improvements that were incorporated within Release 2024Q4.

You may find more information and material at the dedicated OSL#1 Hackfect page.

1st OpenSlice Hackfest

https://creativecommons.org/licenses/by/4.0/
https://www.etsi.org/events/2407-etsi-sns4sns-event
https://www.etsi.org/events/2407-etsi-sns4sns-event
https://www.youtube.com/watch?v=dgrLVD9Sejw
https://www.youtube.com/watch?v=HdwS8LKmHzQ
https://www.youtube.com/watch?v=HdwS8LKmHzQ
https://www.youtube.com/watch?v=tjURVTJQUXI
https://labs.etsi.org/rep/groups/osl/code/-/epics/25
https://labs.etsi.org/rep/groups/osl/code/-/epics/25
https://labs.etsi.org/rep/groups/osl/-/wikis/OSL-HACKFEST-1

ETSI

06921 Sophia Antipolis CEDEX, France

Tel +33 4 92 94 42 00

info@etsi.org

www.etsi.org

This White Paper is issued for information only. It does not constitute an official or agreed
position of ETSI, nor of its Members. The views expressed are entirely those of the author(s).

ETSI declines all responsibility for any errors and any loss or damage resulting from use of the

contents of this White Paper.

ETSI also declines responsibility for any infringement of any third party's Intellectual Property
Rights (IPR), but will be pleased to acknowledge any IPR and correct any infringement of which it

is advised.

Copyright Notification

Copying or reproduction in whole is permitted if the copy is complete and unchanged (including
this copyright statement).

 © European Telecommunications Standards Institute 2025. All rights reserved.

DECT™, PLUGTESTS™, UMTS™, TIPHON™, IMS™, INTEROPOLIS™, FORAPOLIS™, and the TIPHON

and ETSI logos are Trade Marks of ETSI registered for the benefit of its Members.

3GPP™ and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and of the

3GPP Organizational Partners.

GSM™, the Global System for Mobile communication, is a registered Trade Mark of the GSM

Association.

mailto:info@etsi.org

